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Photonic band structure in the nearly plane wave approximation
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Abstract. For photons propagating in a periodic dielectric lattice, the dispersion curve forms photonic
bands separated by forbidden gaps. When the dielectric lattice deviates only slightly from being homoge-
nous, the photonic band structure resembles the linear dispersion relation for photons folded into the first
Brillouin zone, i.e., the so-called empty lattice bands. Using group theoretical technique, we calculate the
splitting of the accidental degeneracies in the empty lattice bands at symmetry points for a simple cubic
dielectric lattice.

PACS. 71.15.-m Methods of electronic structure calculations – 78.20.-e Optical properties of bulk materials
and thin films

1 Introduction

Recently there has been some interest [1–28] in the prob-
lem of propagation of electromagnetic waves through a
fabricated dielectric structure, either periodic or disor-
dered. For a periodic structure, the photon dispersion
curve takes the form of allowed frequency bands separated
by forbidden gaps, analogous to the electronic bands in
crystals [1,2]. On the other hand, in a disordered struc-
ture, there are possibilities for photon localization [2–9].

Apart from confirmation [10–18] of the existence of
photonic gaps in a periodic structure, there exist calcula-
tions of certain specific photonic band structure. In several
of these theoretical works, a plane-wave expansion of the
photonic Bloch wave is made, and the resulting eigenvalue
equation is solved numerically.

In the present work, we also calculate the photonic
band structure using the plane- wave expansion. At the
same time, we make the assumption that the dielectric
lattice is only slightly different from being a homogenous
medium. Under this assumption the photonic bands re-
semble closely the empty lattice bands, i.e., the linear
dispersion relation ω = ck folded into the first Brillouin
zone. The only significant change is that certain acciden-
tal degeneracies at symmetry points and along symmetry
directions will now be lifted due to photon scattering from
the periodic lattice. The advantage of adopting this nearly
plane wave approximation is that we can calculate these
splittings analytically. As usual, analytic results will pro-
vide more useful guidelines as to, for example, how can
one adjust various parameters involved in order to manu-
facture a true photonic gap in the band structure.

a e-mail: l-liu@nwu.edu

It is quite obvious that the present method is analogous
to the nearly free electron approximation in determining
the electronic band structure of simple metals. The essen-
tial difference between the two cases is that while the elec-
tron is represented by a scalar wave function satisfying the
Schrodinger equation, the photon is a vector field governed
by Maxwell’s equations. So despite the close analogy, one
still needs to illustrate the nearly-plane-wave method as
applied to photons. This is the purpose of the present pa-
per. Since at this stage we are not trying to interpret any
specific set of data, we shall just assume a simple model
consisting of a simple cubic dielectric lattice with each unit
cell made of two kinds of dielectric material. This model
will be quantitatively defined and then solved in Section 3
after we have presented the general method in Section 2.
We conclude the paper by making some brief remarks in
Section 4.

2 Plane wave method

For EM wave in dielectric medium, the E and H fields
satisfy Maxwell’s equations

∇×E = −
1

c

∂B

∂t
, ∇×H =

1

c

∂D

∂t
· (2.1)

Assuming linear and isotropic dielectrics and neglecting
magnetic effects, we have the following two constitutive
equations

D = ε(r)E, B = H, (2.2)
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where ε is a position-dependent dielectric constant. It fol-
lows that the H-field satisfies the equation

∇×

(
1

ε(r)
∇×H

)
= −

1

c2
∂2H

∂t2
· (2.3)

In a periodic medium, the H field behaves like a Bloch
wave, i.e., a plane wave with its amplitude modulated as
represented by

H = u(r) ei(k·r−ωt) (2.4)

where the vector amplitude u has the periodicity of the
lattice.

Since u has the lattice periodicity, it can be Fourier
expanded as

u(r) =
∑
k

u(K)eiK·r, (2.5)

involving reciprocal lattice vector K. Likewise, the inverse
dielectric constant can be expressed as a Fourier series

1

ε
(r) =

∑
K

(
1

ε

)
K

eiK·r. (2.6)

It is then convenient to work out equation (2.3) in the
reciprocal lattice space. To do this we must first determine
the direction of the vector amplitude u(K) for each plane
wave with wave vector k+K. From the Maxwell equation
∇ · H = 0, we have

(k + K) · u(K) = 0. (2.7)

In other words, for each k+K, there are two independent
modes, each having its polarization transverse to k + K.
Let us label the two independent polarizations by mutu-
ally perpendicular unit vectors ê1(k + K) and ê2(k + K).
Since H field is an axial vector field, we further specify
that the three mutually perpendicular vectors ê1, ê2 and
k+ K form a right handed rectangular coordinate system
with

ê1 × ê2 =
k + K

|k + K|
· (2.8)

In reciprocal lattice space, equation (2.3) becomes

ω2

c2
u(K) = −

∑
K′

(
1

ε

)
K−K′

(k + K)× [(k + K′)× u(K′)].

(2.9)

Based on (2.8) we see that for either polarization of u (K′),
the cross product inside the bracket above can be written
as

(k + K′)× u(K′) = |k + K′|u(K′)

[either− ê1(k + K′) or ê2(k + K′)]. (2.10)

Taking scalar product with êi(k + K) on both sides of
(2.9), we obtain the following equation

ω2

c2
u(K) I =

∑
K′

|k + K||k + K′|

(
1

ε

)
K−K′u(K) p(K,K′)

(2.11)

where I is a 2 × 2 unit matrix and p matrix involves the
polarization vectors as follows:

p(K,K′) =(
ê2(k + K) · ê2(k + K′) −ê1(k + K) · ê2(k + K′)

−ê2(k + K) · ê1(k + K′) ê1(k + K) · ê1(k + K′)

)
.

Equation (2.11) may be looked upon as a matrix equa-
tion in (K,K′). The ω vs. k dispersion relations can be
obtained by diagonalizing this matrix. This method was
used by Ho et al. [22] in their calculation of the photonic
band structure.

3 A simple cubic dielectric lattice

Consider a simple cubic dielectric lattice of lattice con-
stant a. The lattice is made of two kinds of dielectric ma-
terial of dielectric constant ε1 and ε2. They are distributed
in the way specified as follows: in each unit cell, space
with coordinates −a4 < x < a

4 ,−
a
4 < y < a

4 ,−
a
4 < z < a

4
is filled with dielectric ε1, and the rest of the cell has di-
electric constant ε2. It is trivial to calculate the Fourier
coefficient of the inverse dielectric constant in this model.
It is given by(

1

ε

)
n1n2n3

=(
1

ε1
−

1

ε2

)
1

n1n2n3π3
sin

n1π

2
sin

n2π

2
sin

n3π

2

+
1

ε2

1

n1n2n3π3
sin n1π sin n2π sin n3π (3.1)

for reciprocal lattice vector

K =
2π

a
(n1x̂ + n2ŷ + n3ẑ).

It is clear that the second term in (3.1) only contributes to
the average

(
1
ε

)
000

, and that
(

1
ε

)
n1n2n3

= 0 if any of the

three integers is a non-zero even integer. It is also useful to
give the explicit form of a few Fourier coefficients below:(

1

ε

)
000

=
1

8

1

ε1
+

7

8

1

ε2(
1

ε

)
100

=
1

4π

(
1

ε1
−

1

ε2

)
(

1

ε

)
110

=
1

2π2

(
1

ε1
−

1

ε2

)
(

1

ε

)
111

=
1

π3

(
1

ε1
−

1

ε2

)
·
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Fig. 1. Empty lattice photonic band along (1, 0, 0) and (1, 1, 1)

directions. The frequency is in units of c
√(

1
ε

)
000

2π
a

. The recip-

rocal lattice vectors involved in the folding are labeled as fol-
lows: A: (1, 0, 0), B: (0, 1, 0), C: (0, 1, 0), D: (0, 0, 1), E: (0, 0, 1),
F: (1, 0, 0), G: (1, 1, 0), H:(1, 1, 0), I: (1, 0, 1), J: (1, 0, 1), K:
(0, 1, 1), L: (1, 1, 1).

Now we use the plane wave method developed in the last
section to obtain the photonic band structure for the case
where

|
1

ε1
−

1

ε2
| <

(
1

ε

)
000

· (3.2)

For this case, it is expected that the amplitude of a plane
EM wave propagating through the dielectric lattice is only
weakly modulated and the dispersion curve resembles the
linear relationship for EM wave traveling through a ho-
mogenous medium except that now gaps may open up at
symmetry points in the Brillouin zone.

To appreciate the effect of the periodic lattice, we first
look at the empty lattice drawing of the linear disper-

sion relation ω = c
√(

1
ε

)
000
k folded into the first Brillouin

zone along two selected directions, [1, 0, 0] and [1, 1, 1] in
Figure 1. As can be seen, some highly degenerate modes
occur at symmetry points and along symmetry directions.
At the center of the zone, i.e. Γ point, the ω = 1 mode
is 12-fold degenerate. At X i.e.

(
π
a
, 0, 0

)
point on the zone

surface, the ω = 1
2 mode is 4-fold degenerate while the

ω =
√

5/2 mode is 16-fold degenerate. At the corner
of the zone, i.e. R point with coordinates

(
π
a ,

π
a ,

π
a

)
, the

ω =
√

3/2 mode is 16-fold degenerate. These accidental
degeneracies in the empty lattice band structure should
be lifted once the scattering effect of the dielectric lattice
is taken into account.

To obtain the splitting of the degeneracy at symmetry
points or along symmetry directions, one may use group
theoretical technique to diagonalize the matrix in (2.11).
When a degenerate mode at a symmetry point splits, each
of its split mode must transform according to one of the
small representations of the group of k vector for that sym-
metry point. Working with the character table, one can
find out the symmetry type for all the split modes, and
then construct symmetrized linear combination of vec-
tor waves,

∑
K,λAk+K,λêλei(k+K)·r, accordingly, where ê1

and ê2 are the two polarization vectors perpendicular to
k + K. Using the symmetrized plane waves as a basis,
the matrix in (2.11) is greatly simplified. We further sim-
plify the calculation by dealing only with the block matrix
connecting plane waves belonging to the same degenerate
state and thus neglecting all other band interactions.

In presenting the results we begin with a dis-
cussion of the splitting of the mode ω = 1 at

Γ
(
ω in units of c

√(
1
ε

)
000

2π
a

)
. Due to scattering by the

dielectric lattice this state splits into several modes. We
give each of the split states by specifying its symmetry
type (in commonly used notation for the irreducible rep-
resentation), its degeneracy (indicated by the bracketed
number), the explicit form of its H-field and its frequency.
In this list the wave vector will be expressed in units of
2π
a , the frequency in units of c

√(
1
ε

)
000

2π
a . The three unit

vectors along the cubic axes will be denoted by x̂, ŷ, ẑ.
Γ ′15(3)  x̂ sin y − ŷ sinx

ŷ sin z − ẑ sin y
ẑ sinx− x̂ sin z

ω = (1 + 2B +D)1/2

B =

(
1
ε

)
110(

1
ε

)
000

, D =

(
1
ε

)
200(

1
ε

)
000

Γ15(3)  x̂(cos y + cos z)
ŷ(cos z + cosx)
ẑ(cosx+ cos y)

ω = (1−D)1/2

Γ ′25(3)  x̂ sin y + ŷ sinx
ŷ sin z + ẑ sin y
ẑ sinx+ x̂ sin z
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ω = (1− 2B +D)1/2

Γ25(3)  x̂(cos y − cos z)
ŷ(cos z − cosx)
ẑ(cosx− cos y)

ω = (1−D)1/2.

As can be seen from above, the ω = 1 state splits into
three states, ω =

√
1− 2B +D (3 modes), ω =

√
1−D

(6 modes), and ω =
√

1 + 2B +D (3 modes). In our
present model, D = 0.

For X point, we discuss the splitting of ω = 1/2 and
ω =

√
5/2 states. First, the state at ω = 1/2 splits into

two states.
X5(2)  ŷ sin

1

2
x

ẑ sin
1

2
x

ω =
1

2
(1 +A)1/2

A =

(
1
ε

)
100(

1
ε

)
000

X ′5(2)  ŷ cos
x

2

ẑ cos
x

2

ω =
1

2
(1−A)1/2 ·

As for the ω =
√

5/2 state, it splits into the following
states:

X1(1)

−x̂ 2 sin
x

2
(cos y + cos z) + ŷ cos

x

2
sin y + ẑ cos

x

2
sin z

ω =

√
5

2
(1−A−D +E)1/2

X ′1(1)

ẑ sin
x

2
sin y − ŷ sin

x

2
sin z

ω =

√
5

2
(1−

3

5
A+

8

5
B −

8

5
C +

3

5
D −E)1/2

C =

(
1
ε

)
111(

1
ε

)
000

, E =

(
1
ε

)
210(

1
ε

)
000

X2(1)

− x̂ 2 sin
x

2
(cos y − cos z) + ŷ cos

x

2
sin y − ẑ cos

x

2
sin z

ω =

√
5

2
(1−A−D +E)1/2

X ′2(1)

ẑ sin
x

2
sin y + ŷ sin

x

2
sin z

ω =

√
5

2
(1−

3

5
A−

8

5
B +

8

5
C +

3

5
D −E)1/2

X ′3(1)

− x̂ 2 cos
x

2
(cos y + cos z)− ŷ sin

x

2
sin y − ẑ sin

x

2
sin z

ω =

√
5

2
(1 +A−D −E)1/2

X3(1)

ŷ cos
x

2
sin z + ẑ cos

x

2
sin y

ω =

√
5

2
(1 +

3

5
A−

8

5
B −

8

5
C +

3

5
D +E)1/2

X ′4(1)

x̂ 2 cos
x

2
(cos y + cos z) + ŷ sin

x

2
sin y + ẑ sin

x

2
sin z

ω =

√
5

2
(1 +A−D −E)1/2

X4(1)

ẑ cos
x

2
sin y − ŷ cos

x

2
sin z

ω =

√
5

2
(1 +

3

5
A+

8

5
B +

8

5
C +

3

5
E +D)1/2

X5(2) − x̂ 2 cos
x

2
sin y + ŷ sin

x

2
cos y

x̂ 2 cos
x

2
sin z − ẑ sin

x

2
cos z
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ω =

√
5

2
(1 +A+D +E)1/2

X ′5(2)  ẑ cos
x

2
cos y

−ŷ cos
x

2
cos z

ω =

√
5

2
(1 +

3

5
A−

3

5
D −E)1/2

X ′5(2)  x̂ 2 sin
x

2
sin y + ŷ cos

x

2
cos y

x̂ 2 sin
x

2
sin z + ẑ cos

x

2
cos z

ω =

√
5

2
(1−A+D −E)1/2

X5(2)  ẑ sin
x

2
cos y

−ŷ sin
x

2
cos z

ω =

√
5

2
(1−

3

5
A−

3

5
D +E)1/2 ·

In our model, D = E = 0. The ω =
√

5/2 state splits

into eight states, i.e. ω =
√

5
2 (1 − A)1/2 (4 modes), ω =

√
5

2 (1 + A)1/2 (4 modes), ω =
√

5
2 (1 − 3

5A)1/2 (2 modes),

ω =
√

5
2 (1 + 3

5A)1/2 (2 modes), ω =
√

5
2 (1 − 3

5A + 8
5B −

8
5C)1/2 (1 mode), ω =

√
5

2 (1− 3
5A−

8
5B+ 8

5C)1/2 (1 mode),

ω =
√

5
2 (1 + 3

5A −
8
5B −

8
5C)1/2 (1 mode), ω =

√
5

2 (1 +
3
5A+ 8

5B + 8
5C)1/2 (1 mode).

As for the bands along the cubic x-axis, i.e. ∆, the
lowest two bands remain transverse modes, each with two
possible polarizations; they transform like ∆5 irreducible
representation. The next 8-fold degenerate band splits into
six bands. Neglecting interaction with other bands, we ob-
tain the following bands:

∆1(1)

eiλx[−x̂(cos y + cos z) + iλŷ sin y + iλẑ sin z]

ω = (1 + λ2)1/2(1−D)1/2

∆′1(1)

eiλx(ẑ sin y − ŷ sin z)

ω = (1 + λ2)1/2(1 +
2

1 + λ2
B +

1− λ2

1 + λ2
D)1/2

∆2(1)

eiλx[−x̂(cos y − cos z) + iλŷ sin y − iλẑ sin z]

ω = (1 + λ2)1/2(1−D)1/2

∆′2(1)

eiλx(ẑ sin y + ŷ sin z)

ω = (1 + λ2)1/2(1−
2

1 + λ2
B +

1− λ2

1 + λ2
D)1/2

∆5(2) [
eiλx(i x̂ sin y − λ ŷ cos y)
eiλx(i x̂ sin z − λ ẑ cos z)

ω = (1 + λ2)1/2(1 +D)1/2

∆5(2) [
ẑeiλx cos y
ŷeiλx cos z

ω = (1 + λ2)1/2(1−
1− λ2

1 + λ2
D)1/2 ·

Once we know the empty lattice bands and their split-
ting at symmetry points and along symmetry directions,
it is not difficult to figure out the entire band structure.
For example, the lowest three bands along (1, 0, 0) axis
could be

Γ− ∆5 −X ′5
∆5 −X5

/
Γ ′25

\
∆′2 −X

′
2.

Now, we come to discuss the photon modes at the cor-
ner of the cubic zone, i.e. the R point. The empty lattice
state at ω =

√
3/2 is sixteen fold degenerate. This state

splits into the following modes due to the presence of the
dielectric lattice.

R15(3)

x̂ 2 cos
x

2
cos

y

2
cos

z

2
+ ŷ sin

x

2
sin

y

2
cos

z

2

+ẑ sin
x

2
cos

y

2
sin

z

2

x̂ sin
x

2
sin

y

2
cos

z

2
+ ŷ2 cos

x

2
cos

y

2
cos

z

2

+ẑ cos
x

2
sin

y

2
sin

z

2

x̂ sin
x

2
cos

y

2
sin

z

2
+ ŷ cos

x

2
sin

y

2
sin

z

2

+ẑ 2 cos
x

2
cos

y

2
cos

z

2

ω =
√

3/2(1 +A−B − C)1/2
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R′15(3)
x̂ cos

x

2
sin

y

2
cos

z

2
− ŷ sin

x

2
cos

y

2
cos

z

2

ŷ cos
x

2
cos

y

2
sin

z

2
− ẑ cos

x

2
sin

y

2
cos

z

2

ẑ sin
x

2
cos

y

2
cos

z

2
− x̂ cos

x

2
cos

y

2
sin

z

2

ω =
√

3/2(1 +
5

3
A+

5

3
B + C)1/2

R25(3)
−x̂ sin

x

2
cos

y

2
sin

z

2
+ ŷ cos

x

2
sin

y

2
sin

z

2

−ŷ sin
x

2
sin

y

2
cos

z

2
+ ẑ sin

x

2
cos

y

2
sin

z

2

−ẑ cos
x

2
sin

y

2
sin

z

2
+ x̂ sin

x

2
sin

y

2
cos

z

2

ω =
√

3/2(1−
5

3
A+

5

3
B − C)1/2

R′25(3)

x̂ 2 sin
x

2
sin

y

2
sin

z

2
+ ŷ cos

x

2
cos

y

2
sin

z

2

+ẑ cos
x

2
sin

y

2
cos

z

2

ŷ 2 sin
x

2
sin

y

2
sin

z

2
+ ẑ sin

x

2
cos

y

2
cos

z

2

+x̂ cos
x

2
cos

y

2
sin

z

2

ẑ 2 sin
x

2
sin

y

2
sin

z

2
+ x̂ cos

x

2
sin

y

2
cos

z

2

+ŷ sin
x

2
cos

y

2
cos

z

2

ω =
√

3/2(1−A−B + C)1/2

R12(2)
x̂ sin

x

2
cos

y

2
cos

z

2
− ŷ cos

x

2
sin

y

2
cos

z

2

−x̂ sin
x

2
cos

y

2
cos

z

2
− ŷ cos

x

2
sin

y

2
cos

z

2

+ẑ 2 cos
x

2
cos

y

2
sin

z

2

ω =
√

3/2(1−A−B + C)1/2

R′12(2)
−x̂ cos

x

2
sin

y

2
sin

z

2
+ ŷ sin

x

2
cos

y

2
sin

z

2

x̂ cos
x

2
sin

y

2
sin

z

2
+ ŷ sin

x

2
cos

y

2
sin

z

2

−ẑ 2 sin
x

2
sin

y

2
cos

z

2

ω =
√

3/2(1 + A−B − C)1/2.

Thus, the ω =
√

3/2 mode at R point splits into four

states i.e., ω =
√

3/2(1 − 5
3A + 5

3B − C)1/2 (3 modes),

ω =
√

3/2(1 − A − B + C)1/2 (5 modes), ω =
√

3/2(1 +
A−B−C)1/2 (5 modes), ω =

√
3/2(1 + 5

3A+ 5
3B+C)1/2

(3 modes).
Along the body-diagonal of the cubic zone, i.e. Λ axis,

the lowest empty lattice band remains doubly degener-
ate and transforms according to Λ3 irreducible represen-
tation. The next six fold degenerate band splits into four
bands. When interaction with other bands is neglected,
these bands behave as follows:

Λ1(1)

ei(λx+λy+λz)

[
x̂

(
λe−ix +

1− λ

2
e−iy +

1− λ

2
e−iz

)
+ ŷ

(
1− λ

2
e−ix + λe−iy +

1− λ

2
e−iz

)
+ ẑ

(
1− λ

2
e−ix +

1− λ

2
e−iy + λe−iz

)]
ω = (3λ2 − 2λ+ 1)1/2(1−B)1/2

Λ2(1)

ei(λx+λy+λz)
[
x̂(e−iy − e−iz)

+ŷ(e−iz − e−ix)

+ẑ(e−ix − e−iy)
]

ω = (3λ2 − 2λ+ 1)1/2(1−
3λ2 − 2λ− 1

3λ2 − 2λ+ 1
B)1/2

Λ3(2) ei(λx+λy+λz)[x̂(e−iy + e−iz)− ŷe−iz − ẑe−iy]

ei(λx+λy+λz)[x̂(e−iy − e−iz) + ŷ(2e−ix + e−iz)
− ẑ(2e−ix + e−iy)]

ω = (3λ2 − 2λ+ 1)1/2(1 +
1

2

3λ2 − 2λ− 1

3λ2 − 2λ+ 1
B)1/2

Λ3(2)

ei(λx+λy+λz)

[x̂ (λe−ix −
1− λ

4
e−iy)−

1− λ

4
e−iz) + ŷ(

1− λ

2
e−ix

−
λ

2
e−iy −

1− λ

4
e−iz) + ẑ(

1− λ

2
e−ix

−
1− λ

4
e−iy −

λ

2
e−iz)]

ei(λx+λy+λz)

[x̂ (
1− λ

4
e−iy −

1− λ

4
e−iz) + ŷ(

λ

2
e−iy −

1− λ

4
e−iz)

+ ẑ(
1− λ

4
e−iy −

λ

2
e−iz)]

ω = (3λ2 − 2λ+ 1)1/2(1 +
1

2
B)1/2.
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From the results above, we conclude that the lowest three
bands along Λ-axis could be

Γ − Λ3 − R12

Λ3

/ \
Γ ′25 R′25 .
\ /
Λ1

4 Remarks

As is known, the nearly-plane-wave method, when applied
to electrons in a crystal, often gives us powerful insight
into the electronic band structure. In the form of semi-
empirical pseudopotential approach, the method even pro-
duces quantitatively meaningful results. When applied to
photons, since the condition (3.2) for the validity of the
method can be more easily satisfied than the weak po-
tential assumption in the electron case, the method is ex-
pected to work better here. On the other hand, there is a
problem with the convergence of the plane wave method.
As can be seen from (3.1) and (2.1), the coupling between
larger and larger reciprocal lattice vectors does not de-
crease very rapidly. These higher band interactions should
be included, perhaps by using techniques of perturbation
theory or by numerical procedures, if one wants to obtain
quantitatively meaningful results. We have numerically
calculated the band structure by including a large number
of plane waves in the expansion in (2.5). In the Appendix
we compare the numerical results with the approximate
results obtained in the previous Section. In any case, the
splittings of degenerate modes at symmetry points and
along symmetry directions obtained here are based on
group theory; they remain qualitatively correct. There-
fore, we may draw certain conclusions from these results,
especially in regard to questions like how to manufacture
a photonic gap which extends to the entire Brillouin zone.

For this problem, one would first look at the symme-
try of the dielectric lattice. For example, in a simple cubic
lattice studied here, it seems impossible to get a full gap
between the second and the third band because the two
bands will always touch each other at the Γ -point. This
is because that the split modes of ω = 1 degenerate state
at Γ are all 3-fold degenerate, as discussed in Section 3.
To lift this degeneracy, one must distort the cubic lattice
into, say, a tetragonal lattice. In a simple cubic lattice,
it looks more hopeful to obtain a full gap between the
first and the second band. But whether this can be real-
ized depends on two factors. First, the lowest split state
of ω =

√
3/2 degenerate mode at R should be only dou-

bly degenerate, i.e., having either R′12 or R12 symmetry,
instead of belonging to other symmetry with 3-fold degen-
eracy. Second, this lowest split state at R must lie below
the upper split mode of ω = 1/2 state at X so that the gaps
at R and at X may coincide. Since ω =

√
3/2 state and

ω = 1/2 state are widely separated, in the sense that their

ω

k
[1,0,0][1,1,1]

1
2

3
2

R Γ X

1

Fig. 2. Photonic band structure for the simple cubic lattice
of Section 3 with ε1 = 2, ε2 = 1, and frequency in units of

c
√(

1
ε

)
000

2π
a

. The solid lines were determined numerically us-

ing N = 587 plane waves, while the dotted lines represent the
lowest band approximation considered in the text.

difference is an appreciable fraction of their frequency, the
second requirement may not be easy to achieve unless the
lattice has very high dielectric contrast.

This brings us to discuss a F.C.C. dielectric lattice
structure. Comparing with simple cubic lattice, the Bril-
louin zone, as a truncated octahedron, is closer to being
a sphere. The distances of X, L, and W points from the
center of the zone do not differ that much. As a result, the
first empty lattice band states at these points are close to
each other in frequency. Specifically, the first empty lat-
tice state has frequency ω = 1 at X, ω =

√
3/2 at L and

ω =
√

5/2 at W. Unlike in the simple cubic structure the
frequency difference between any two state here is a small
fraction of the frequency itself. All these degenerate states
split due to lattice scattering with the gap proportional to(

1
ε

)
200

at X and W, and to
(

1
ε

)
111

at L. So long as these
Fourier coefficients do not vanish, gaps will open up at
these symmetry points. When the size of the gaps become
comparable to the frequency difference between the empty
lattice states, the gaps are likely to coincide. This is the es-
sential reason why all calculations in photonic bands leads
to the conclusion that gaps exist in F.C.C. and diamond
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1

k
[1,0,0][1,1,1]

1
2

1
4

3
4

R Γ X

ω

Fig. 3. Photonic band structure for ε1 = 16, ε2 = 1,and fre-

quency in units of c
√(

1
ε

)
000

2π
a

. The bands were determined

numerically using N = 1503 plane waves.

structure. We shall, in a future publication, elaborate in
detail what factors in a dielectric lattice would make it
favorable for obtaining a full photonic gap.

Appendix

In order to check whether our results based on the empty
lattice band structure are quantitatively meaningful, we
have performed a numerical calculation of the photonic
bands by including a large number of plane waves in the
expansion in (2.5). This has been done for two cases, one
for lattice with low dielectric contrast and one with high
dielectric contrast. In each case, we have included enough
number of plane waves to achieve convergence. The nu-
merical results are compared with those obtained using
the approximations described in Section 3. For low dielec-
tric contrast the comparison is presented in Figure 2 and
for high dielectric contrast in Figure 3. As expected, the
agreement is quite good for low dielectric contrast. In fact,
the agreement is very good for the case with dielectric ra-
tio ε2/ε1 = 1.1, but we do not show this case here because
for the most part it is hard to distinguish the two sets of

results. On the other hand there are noticeable deviations
between the two sets of results for high dielectric contrast
case in Figure 3. It is noted that in the present model, the
lowest state at R is triply degenerate so there is no gap
between the first and the second band.
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